
To specify directions, use the coordinate system shown below where +x is to the right, +y is toward the top of the page, and +z is out of the page.

Note the following terminology for directions:

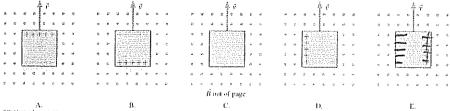
• to the right (+x)

• to the left (-x)

• upward or toward the top of the page (+y)

• downward or toward the top of the page (-y)

• out of the page (+z) \odot


• into the page (-z) \otimes

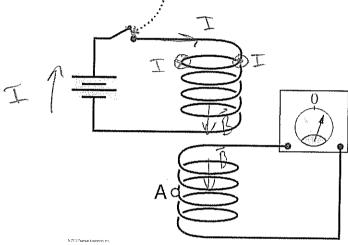
Section 1. Multiple Choice

Questions 1–3: A piece of metal has a velocity in the +y direction through a region of uniform magnetic field in the +z direction.

1. In what direction is the magnetic force on a mobile electron that is in the metal?

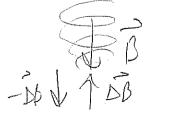
- (a) to the right
- (b) to the left
 - (c) up, toward the top of the page
 - (d) down, toward the bottom of the page
 - (e) None of the above because the magnetic force on a mobile electron is zero.
- 2. Which of the images below shows the separation of charge (if there is any) on the piece of metal due to the magnetic force on mobile electrons in the metal?

- (a) A
- (b) B
- (c) C
- (d) D (e) E

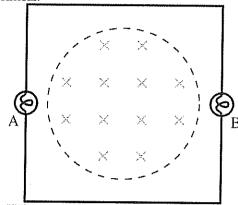

Fing pushes electrons to the left.

- 3. If the block of metal is 0.1 m on each side and if the magnetic field is 0.5 T, what speed is needed for the emf across the block (along the direction of charge separation) to be 1.5 V (the equivalent of a AA battery)?
 - E=VLB (a) 0.075 m/s(b) 0.13 m/s
 - (c) 0.75 m/s

 - (d) 3.0 m/s30 m/s
- $V = \frac{\varepsilon}{18} = \frac{1.5V}{(0.14)}(0.57)$


Questions 4-5: A coil of wire is connected to a battery. A switch can be opened or closed in order to connect and disconnect the battery.

Open or close switch.


A second coil is connected to an ammeter which measures current in the coil.

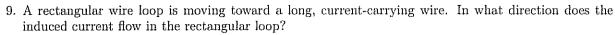
- 4. Suppose that the switch is closed and remains closed. While the switch remains closed and the current in the top coil is constant, what is the direction of the induced current at point A in the bottom coil?
 - (a) out of the page
 - (b) into the page
 - Neither of the above because the induced current is zero. ((c))
- 5. The switch is then opened.) During the brief time interval that the switch is being opened, what is the direction of the induced current at point A in the bottom coil?
 - out of the page
 - into the page
 - The induced current is zero. (c)

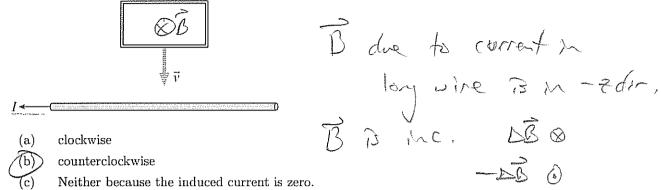
B decreased from some Constat value

Questions 6-8: A region of uniform magnetic field exists in a circle of radius 0.02 m. A square circuit of length 0.05 m is centered on this region, perpendicular to the magnetic field, as shown. Bulbs A and B are identical.

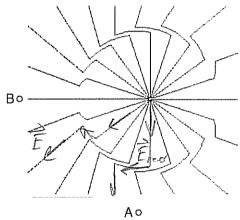
At a certain instant of time, the magnetic field has a magnitude of 2 T and is increasing at a rate of 0.1 T/s.

6. What is the direction of the induced current in the wire loop?

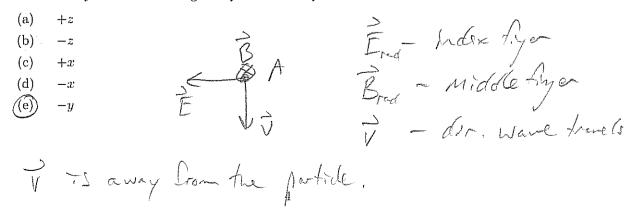

- (a) clockwise
- (b) counterclockwise
- None of the above since the induced current is zero.
- 7. If we define the area vector for the wire loop to be into the page, then the magnetic flux through the wire loop (the circuit) at this instant of time is:
 - $1.26 \times 10^{-4} \ \mathrm{T \cdot m^2}$ (a)
 - $2.50\times10^{-4}~\mathrm{T\cdot m^2}$ (b)
 - $5.00\times10^{-3}~\mathrm{T\cdot m^2}$ (c)
 - $2.51 \times 10^{-3} \text{ T} \cdot \text{m}^2$
 - $2.00~\mathrm{T}\cdot\mathrm{m}^2$


$$=(27)(\pi)(0.02n)^2$$

- 8. What is the induced emf around the circuit?
 - (a) $1.26 \times 10^{-4} \text{ V}$
 - $2.50 \times 10^{-4} \text{ V}$
 - $5.00 \times 10^{-3} \text{ V}$ (c)
 - $2.51 \times 10^{-3} \text{ V}$ (d)
 - (e) 0.1 V


$$= (0.1 \pm)(\pi)(0.02)^{2}$$

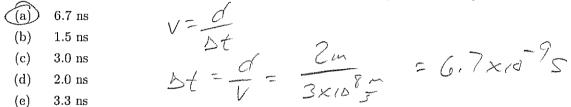
$$= 1.26 \times 10^{-4} V$$


Questions 10–14: A positively charged particle is at rest at the instant shown below. A short time interval before this, the particle was moving with a constant velocity. During the brief time interval that it slowed down and stopped, an electromagnetic pulse was created.

10. What is the direction of the radiative electric field at location A when the electromagnetic pulse passes location A?

(a)
$$+z$$
 Pulse is travely orthogod
(b) $-z$
(c) $+x$ Fracting orthogod
(d) $-x$ Fracting orthogod
(e) $-y$

11. The electromagnetic pulse is traveling radially outward from the charged particle. What is the direction of the velocity of the electromagnetic pulse when it passes location A?



13. During a time interval that your cell phone is emitting electromagnetic radiation (in radio frequencies), the electrons in the antenna of the phone are

12. What is the direction of the radiative magnetic field at location A when the electromagnetic pulse

- at rest and remaining at rest (a)
- (b) moving with a constant velocity
- accelerating
- 14. If point A is 2 m from the particle, how long does it take for the pulse to reach point A?

- 15. The energy levels for a certain quantum system are 1.0 eV, 4.0 eV, and 6.0 eV. Sketch an energy diagram. What are the energies of the photons that can possibly be emitted by the system?
 - GDEV | SE = Ephila 4. dex 4 = C 4 = 2 eV 1001 = 6 1 = 5 EV 1.0 eV, 4.0 eV, and 6.0 eV (b) 5.0 eV, 7.0 eV, and 10.0 eV 2.0 eV and 3.0 eV 2.0 eV, 3.0 eV, and 5.0 eV $4.0~{\rm eV}$ and $6.0~{\rm eV}$ = 4-1 = SeV
- 16. It is possible for a small current to flow through the filament of the bulb yet the bulb does not give off visible light. In this case, its peak wavelength is in the
 - Its temp is less than a filament that glows in visible region. IT = court. as TI IT. (a) UV region (b) X-ray region (c) violet region (d) red region IR region
- 17. Suppose that you measure the spectrum of a glowing filament of a certain light bulb. You find that the wavelength of its peak is 610 nm. What is the temperature of the filament?
 - $AKT = 2.9 \times 10^{-3} \text{ MoK}$ $T = \frac{2.9 \times 10^{-3} \text{ MoK}}{610 \times 10^{-9} \text{ MoK}}$ (a) 1770 K (b) $2100~\mathrm{K}$ (c) $4750~\mathrm{K}$ (d) 6100 K (e) 5230 K 4754 K/

18.	-	increase the temperature of the filament of the bulb in the previous question (by increasing the through it), the wavelength of the peak will be
	(a)	the same as before.
	(b)	longer than before.
	(c)	shorter than before.
19.	Suppos	e that the wavelength of the peak of the spectrum from a blackbody, such as a star or filament mple, is 530 nm. This object will appear
	(a) (b)	orange This 75 in the middle of the
	(c) (d)	white white vis spectra. All colors fra violet none of the above to red will be enifted. So it will
	(e)	none of the above to pot will be a silled 5 - 4 will
20.	What is	
	(a)	a letter which
	(b)	12 μm ρω Ε = MC 25 μm ρω Ε = Δ
	(c)	31 µm qu
	(d)	31 jumper 1 = 1240 eV. nm = 17.6pm = 0.0496 nm = 19.6pm
	(e)	83 mm/- F 25xcd3 eV
		emits 1×10^{16} photons per second. The photons have a wavelength of 650 nm. What is the
	power o	of the laser in watts?
	(a)	4.6 × 10-3 W (X10 photons) 1.112
	. ,	of the laser in watts? 4.6 × 10 ⁻³ W 1.9 W 1.6 × 10 ⁻³ W 1.0 W 3.1 × 10 ⁻³ W laser and a green laser both emit light of power 2 mW. Which laser emits more photons per
	(c)	$1.6 \times 10^{-3} \text{ W}$
	(d)	$= \left(\frac{1.0 \mathrm{W}}{1.0 \mathrm{W}} \right) = \left(\frac{1.0 \mathrm{W}}{1.0 \mathrm{W}} \right) = 1.9 \mathrm{W}$
00	(e)	$3.1 \times 10^{-3} \text{ W}$
22.	A blue second?	laser and a green laser both emit light of power 2 mW. Which laser emits more photons per
	(a)	blue leser The deat 7 tyree-photon. Oreen leser enits
/		green laser more strateurs nor sor
	101	Neither; they emit the same number of photons per second.
Quest	ions 23	-26 are related to a hydrogen atom.
23.	A hydro	blue laser Flue photo 7 Free photon. Green less enits green laser Neither; they emit the same number of photons per second. Page a related to a hydrogen atom. The absorbed a photon. The green photon $n = 3$ to orbit $n = 5$. Did it emit or absorb a photon? The emitted a photon. The green photon $n = 3$ to orbit $n = 4$. The emitted a photon.
	\widehat{a}	It absorbed a photon. It great energy.
	(6)	It emitted a photon.
	(c)	It could have either absorbed a photon or emitted a photon.
24.	For the	previous question, what energy photon is emitted or absorbed?
	(a)	3.40 eV 1.51 eV $=$ ΔE $=$ E $=$ $=$ E $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
	(b)	1.51 eV - pluster = 1/2 - 1.
	(c)	2.48 eV 0.97 eV $= \left -13.6 - 13.6 \right = 0.967 \text{ eV}$ 0.54 eV
	(d)	= [-13.6] = [0.967] = [0
	(e)	0.54 eV

25.	As the	energy state n increases	s, the difference l	oetween the e	nergies of consecut	tive energy le	vels	
	(a)	decreases. increases. stays the same. any photons in the visit		grey)	levels get	claser	together	
	(b)	increases.		<i>''</i>	-426	1=1	VF=-13.	6.00
	(c)	stays the same.		Two.	- 13.0	1=21	\mathcal{L}	11
26.	How ma	any photons in the visib	ole region of the	spectrum doe	s a hydrogen atom	absorb or en	nit?	, y ev
	(a)	two				1 - 7	En /	~/
	(b)	three				-11-2	E = -1,	2/60

(a)	two	1 = 7	Fr. m.	-15/
(b)		A=3	L	-1,5/2
(c)	four	(

We calculated all four, though it's hard to see the lovest wavelength voible photon.